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The very. early stages of evolution of the universe might have a profound 
implications for its further evolution and presently observed large scale structure. 
It is shown that if the universe passed through an inflationary phase after the 
quantum stage then the effects of quantum gravity have been washed out and the 
presently observed distribution of matter is a consequence of processes occurring 
during and after the inflationary, phase. 

It is generally believed that effects of quantum gravity could play a 
significant role only in very special, extreme situations, e.g., at very early 
stages of evolution of the universe and close to space-time singularity, which 
is predicted to form in the process of catastrophic gravitational collapse. 
From the point of view of nonpractitioner I would like to look at the 
possible imprints of effects of quantum gravity and grand unified theories 
on the present structure of the universe. 

The standard hot big bang model of the universe is very simple and 
provides amazingly accurate description of its evolution. In order to discuss 
some of the problems of the standard model let me briefly review the basic 
observational facts. 

As is well known the universe is expanding. The velocity of recession of 
a galaxy as measured by an observer on Earth is proportional to its 
distance. The proportionality coefficient is the Hubble constant. The pres- 
ent value of the Hubb[e constant is in the range 75 + 25 km s - 1 Mpc- 1. In 
the first approximation, disregarding local irregularities, the expansion is 
isotropic. Counts of galaxies and radio sources indicate that in the large- 
scale matter in the universe is distributed isotropically and homogeneously. 
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714 Demianski 

The isotropy of the universe on a large scale is very precisely confirmed by 
observations of the radiation background in X rays, microwave, and radio 
wavelengths. Observed abundance of primordial light elements indicates, 
that at the very early stage of evolution, about 1 s past the initial singularity 
the universe was hot and was expanding isotropicaily. 

Assuming that general relativity is the correct theory of gravity and 
that the position of Milky Way is typical, and using available observational 
information we can quite reliably reconstruct the thermal history of the 
universe and discuss important physical processes starting from an epoch 
when the universe was filled in with hot quark-gluon plasma (see a recent 
review by Barrow, 1983). Advances in the program of unifying elementary 
interactions allow us to consider even earlier epochs much closer to the 
Planck era, when classical general relativity supposedly breaks down and 
effects of quantum gravity (supergravity) play a dominant role. 

In spite of unquestionable successes there are however observational 
facts which cannot be explained in the framework of the big bang model. 
Among the most important on the list are: the large-scale isotropy and 
homogeneity of the universe, isotropy of the microwave background radia- 
tion, close to critical mean energy density, present ratio of photons to 
baryons, baryon asymmetry, and small-scale distribution of matter in the 
universe. Statements that the universe is as it is because it was as it was are 
not very satisfactory, as is the point of view that the initial conditions at the 
very early stage (the Planck era) were such that the universe evolved into its 
present state. We would like to understand the physical processes which 
determined the present structure of the universe. Since a satisfactory, 
consistent quantum gravity theory has not yet been discovered there is no 
hope, at the moment, to complete this program. There are however results 
which are encouraging. 

In 1969 Parker and, independently, Zeldovich (1970) pointed out that 
at the early stage of evolution of the universe due to coupling of quantum 
fields to time-dependent gravitational field particles could be spontaneously 
created. It was later shown by Zeldovich and Starobinsky (1971) and 
confirmed by detailed calculation by Hartle and Hu (1979) that the back- 
reaction of created particles on initially homogeneous but anisotropic 
universe can smooth out the anisotropy. This process is very effective and 
even significant anisotropy present at the Planck time is quickly dissipated 
on a time scale comparable to the fraction of the Planck time. This process 
might be even more effective in full quantum theory of gravity. For 
discussion of main results and technical details see Hartle (1981). 

Already in 1967 Sakharov pointed out that the observed asymmetry of 
baryons and the photon to baryon ratio could be explained in a theory of 
strong interactions which does not conserve baryon number, and he also 
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noticed that such theory should violate CP. These conditions are satisfied by 
a large class of grand unified theories of strong, electromagnetic, and weak 
interactions. Weinberg (1979) has shown that in the framework of grand 
unified theories it is possible to account for observed asymmetry of baryons 
and entropy per baryon (see the recent review by Langacker, 1981). 

Let us now concentrate on the problem of small-scale distribution of 
matter in the universe. It is commonly accepted that stars, galaxies, and 
clusters of galaxies appeared as a consequence of growth of small initial 
perturbations. 

The evolution of small initial perturbations in the homogeneous and 
isotropic Friedman model was analyzed by Lifshitz in 1946. Lifshitz showed 
that density perturbations are unstable and in a perfect fluid with equation 
of state p = ( 7 - 1 ) P ,  where P is the density, p the pressure, and y is a 
constant 1 ~ ~, ~< 2 density perturbations 6O/p of a scale ?~ larger than the 
size of the horizon are described by 

2(3 y - 2) y - 2 

6___p_p = Al t 3v + Az t v (1) 
P 

where A~ and A 2 are the two independent amplitudes, which can depend on 
position. Amplitude of the growing mode A~ is connected with variations of 
spatial curvature and the amplitude of the decreasing mode A 2 is connected 
with nonsimultaneity of the initial singularity and spatially varying anisotro- 
pies in the expansion flow. The density perturbations 60/0 of scale 7~ 
generate metric perturbations 6g 

If the spectrum of density perturbations is described by ~Sp/p-  M - "  
the corresponding metric perturbations are 6g - M 2 / 3 - a .  From this relation 
it follows that the Friedmanian character of the model can be preserved 
only if a =  2/3. Density perturbations with the spectrum 6O/p ~ M 2/3 
generate metric perturbations which do not depend on scale. They are called 
constant curvature perturbations. Their exceptional properties were noticed 
and discussed by Harrison (1970) and independently by Zeldovich (1972). 
Constant curvature perturbations play an important role in the adiabatic 
theory of galaxy formation. Harrison noticed that constant curvature 
fluctuations might have been produced by quantum fluctuations at the 
Planck time. 

As early as in 1957 Wheeler, using a simple dimensional argument, 
showed that quantum fluctuations in the gravitational field could produce 
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metric perturbations 6g: 

where l e = ( h G / c 3 )  1/2 is the Planck length. To relate the metric perturba- 
tions at the Planck time tp = le/c with the density perturbations we use the 
Einstein field equations and so we have 

8 g - l p 2 8 R - t e 2 G 6 o - ( ~ ) e  (4) 

Comparing (3) and (4) we have 80/0 ~ M -2 /3 .  This heuristic result indi- 
cates that there might be an intricate relation between quantum gravity and 
small-scale structure of the universe. 

This hope has recently been shaken up by the new model of the early 
evolution of the universe the so-called inflationary universe. The inflation- 
ary model of the early evolution of the universe was proposed by Guth 
(1981) and was recently improved by Linde (1982) and Albrecht and 
Steinhardt (1982). Guth (1981) noticed that first-order phase transition 
predicted by grand unified theories, which occurs when temperature T is of 
the order of 10 L4 GeV could have profound cosmological consequences. The 
inflationary scenario requires that the Higgs field effective potential V(q~) 
have a global minimum at zero temperature. This global minimum is called 
the true vacuum. The zero temperature effective potential should also 
possess a second metastable extremum at q~ = 0, which is called the false 
vacuum. Furthermore one assumes that there is a critical temperature 
T,---1014 GeV above which the finite temperature effective potential has a 
lower value near the false vacuum than it has near the true vacuum. For any 
small temperature T >  0 the false vacuum is stabilized by a bump in the 
finite-temperature effective potential. The height of this bump is of the 
order T 4 and its width is of order T. 

If at the very early stages of the evolution of the universe there was a 
hot region ( T > 1 0  ~4 GeV), which was expanding fast enough to cool to T,. 
before gravitational effects could cause it to collapse then it will cool to T,. 
and supercool. In the supercool phase the constant false vacuum energy 
density determines the rate of expansion and this region expands exponen- 
tially. Evolution of this part of the universe can be described by the de Sitter 
metric with the false vacuum energy playing the role of cosmological 
constant. The Higgs field fluctuates around the false vacuum. Some fluctua- 
tions could grow around the false vacuum. Some fluctuations could be large 
enough to start to roll over the potential barrier. If they roll over sufficiently 
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slowly the de Sitter phase could last long enough to allow many e-folding 
times to pass. This region of space-time (bubble) will grow and become 
larger than the present observable universe�9 Finally the Higgs field reaches 
the steep part of the potential, it quickly rolls down and oscillates about the 
true vacuum position. These oscillations are effectively damped out through 
coupling to other fields and the released energy is thermalized. The universe 
reheats to temperature T = T c = 1014 GeV. The subsequent evolution follows 

�9 the standard big bang scenario. 
If the de Sitter phase could last for at least 60 e-folding times than the 

horizon would grow and become larger than the presently observed uni- 
verse. Since after the transition to the true vacuum state the universe is 
reheated to T=  Tc and the vacuum energy is transformed into radiation 
energy the radiation energy is enhanced by a factor =1052 relative to 
the curvature term. These properties of the inflationary model are very 
important. They can be used to explain several, mentioned earlier, cosmo- 
logical conundrums of the standard model, namely, the isotropy of the 
microwave background radiation (the horizon problem), the observed large 
scale isotropy of the universe, the near critical vacuum energy density, and 
others. 

It was shown by Frieman and Will (1982) that the inflationary scenario 
is stable with respect to small-density perturbations�9 Hawking and Moss 
(1982) suggested that there is a cosmological "no hair" theorem and the 
de Sitter space-time is dynamically stable�9 

It was also shown that the new inflationary model is compatible with 
arbitrarily large initial anisotropy (Demianski, 1984). To show that let us 
consider an anisotropic Bianchi type-I universe filled with radiation and 
constant false vacuum energy density O~,. The evolution of this model is 
described by 

�9 R4 (5)  

and 

p,R 4 = const (6) 

where R is related to the volume expansion parameter by 12/V = 3(R/R),  
Or is the radiation energy density, and a is a constant related to the initial 
anisotropy. Equation (5) can be rewritten in the form 

dz = 2( z2 +1+ ~8/z )l/2 
dr  

(7) 
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where 

[ 8r ]1/2 
= x '  = [ - 3 - p , . j  ' ,  

c 

[  _]lJ2 E /3-  Ro6pr(oi Pr(o) = Prffh Pr(oI 

R o =cons t ,  and Pr~o) and G,,((u are correspondingly the initial energy 
density of radiation and anisotropy. 

In equation (7) ..2 is related to the false vacuum energy density, 1 to 
the radiation energy density, and f l / z  to the anisotropic energy density. If 
/3 >> 1 and the anisotropic energy density determines the expansion rate of 
the universe -=fll/3(3'r)2/3. The radiation energy density becomes com- 
parable with the vacuum energy density when z =1 corresponding to 
r = (1/3)/3 1/2. The vacuum energy density starts to play a dominant role 
when - =  fl~/3 corresponding to "r = 1 / 3 .  

The de Sitter phase occurs if the small fluctuations of the Higgs field 
generated at the moment when the universe cools to T, (g. = Or or z =1)  do 
not have enough time to significantly grow by the time when the vacuum 
energy density starts to play a dominant dynamical role. 

Let us assume that the initial fluctuations of the homogeneous Higgs 
field are sufficiently large so that their evolution can be described by the 
classical evolution equation 

6 + 3H+ = ~,r (8) 

where X = 1 /2  and H is the Hubble constant. It is easy to check that the 
approximate solution is 

q, = q~' (9) 
[1-  ~ ( dp,/X )2( ,r -1/3V/-~ )2] b'2 

Following Guth we assume that the initial fluctuations are of the order of 
thermal fluctuations and ~, = 0.23X. By the time when the vacuum energy 
starts to determine the expansion rate of the universe the fluctuations grow 
only insignificantly q~('r=l/3)/q~, =1.01. Therefore the vacuum energy 
survives up to the moment  when it starts to play a dominant dynamical role 
and the universe stays in the false vacuum state for many e-folding times. 

One might ask what will happen when due to coupling to other fields 
the anisotropic energy density is dissipated and released in the form of heat. 
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This will only delay the moment when the phase transition occurs but it will 
not alter our conclusion. 

If it turns out that the inflationary model provides the correct descrip- 
tion of the very early evolution of the universe the problem of initial 
conditions, which we have to specify, would disappear. It would be enough 
to assume that initially there was a small region of the very early universe 
which was homogeneously expanding until the moment, when vacuum 
energy started to play a dynamically important role. In the inflationary 
model this is the only restriction which we have to impose on initial 
conditions. During the de Sitter phase this small region will expand to 
encompass total mass much larger than the mass contained in the presently 
observable part of the universe. After reheating this homogeneous and 
isotropic region will be filled with radiation of temperature T, and its mean 
energy density will be practically equal to the critical density. 

From the analysis of Frieman and Will (1982) it follows that any 
primordial density perturbations existing in the pre-de-Sitter phase will be 
washed out. To see if other types of primordial perturbations could survive 
the inflationary phase, let us consider the purely gravitational perturbations. 
Since details of the phase transition and the reheating process are not 
known, let us assume that both processes are instantaneous. We also assume 
that the universe is homogeneous and isotropic, with Euclidean spacelike 
sections, and initially is radiation dominated. When the universe cools to 
certain critical temperature T,. the false vacuum energy density starts to play 
a dynamically dominant role and the universe expands exponentially. After 
many e-folding times the latent heat is released and the universe reheats 
again to T,. and becomes radiation dominated. 

Our model is described by the line element of the form 

as  = a t -  _ a 2 ( t ) ( j . , . - "  + 4 ,  + 2 ) (lO) 

where 

{ ao( t ) l /2 ,  t ~ t t 

l - I  I 

a ( t ) =  ao( t l ) l /2e-2-~;  tl <~t<~t2 

~ a o e X ( t )  1 / 2 -  t ,  + t 1, t >~ t 2 

(11) 

and a o =const ,  t~ is the time when vacuum energy starts to play a 
dominant dynamical role, and t 2 is the moment of reheating. We assume 
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that X = t2 - t l /2t~ --60, so during the de Sitter phase the scale factor a(t )  
increases by a factor = 1026. 

In the synchronous gauge (Sgoo = 8go,) the purely gravitational per- 
turbations of the metric (10) 8g,k = h,k (i, k = 1,2,3) satisfy the equation 

p 

a2_lm], k h ' , ' k + 2 a h ; ~ +  g ,,.~ .... = 0  (12) 
a 

where prime denotes the derivative with respect to ~-= f d t / a ( t ) ,  and a 
comma denotes the derivative with respect to the Cartesian spatial coordi- 
nates. Lifshitz (1946) has shown that the metric perturbations corresponding 
to the purely gravitational perturbations can be decomposed into tensor 
harmonics Q,k defined as solutions of the following set of equations: 

. )  

dxQ, k = n~Q,k,  Q / =  O, Q,~.k = 0 (13) 
a-  

where A denotes the three-dimensional Laplacian. Expanding h,~ into 
tensor harmonics h,k = ~u,,('r)Q,k(x), we obtain 

v" + 2 a ' .  ' + ,12. = 0 (14 )  
a 

where we have omitted the subscript n. Finally, introducing u - I~/a we can 
rewrite equation (14) in the form 

W' + . ( . - "  - a " / a )  = 0 (15) 

In the radiation-dominated era a --- ~- and a"  = 0, so at the very early 
stage and after reheating we have 

~,,, = A sin(nT + q~) 

/~! = B sin( n'r + ~b) (16) 

where A, B, q~, and + are constants. 
During the de Sitter phase equation (15) assumes the form 

(21"t r )  2 = 0 
(17) 
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The general solution of this equation is 

/.t = C l [sin n(2r  1 - r )+ 

C 2 [cos n (2 r, - r ) -  
L 

cos,,  (2~'~- ~') ] 
s inn(2r  l -  r) 1 

n(-~r  l -  7r ~ J (18) 

Assuming that /, and its first derivative are continuous and averaging 
over the initial phase ~ it is possible to relate the final amplitude B with the 
initial amplitude A. The general formula is complicated so let us consider 
only some interesting limiting cases. For perturbations, which at the mo- 
ment of the first transition are of moderately high frequency, such that 
nr  I >> 1, but nrle-X << 1 we obtain (B-' /A 2) = (1/2)(eX/nrl)  4 >> 1. This 
means that in our model the amplitude of moderately high-frequency 
gravitational perturbation is very effectively amplified. 

The high-frequency gravitational perturbations could be interpreted in 
terms of gravitons. The number density and energy density of gravitons of 
mode n is given by 

(amplitude)-' n ( a m p l i t u d e )  2 n -' 
N,, - a3 , e,, - a4 (19) 

It is interesting to compare the number density and energy density of 
gravitons before and after the de Sitter phase, we have 

1 . . e X 

N( r2) = ~ N( r,)'( nT)  4 , 
1 1 

(20) 

The number density of moderately high-frequency gravitons increases but 
their energy density decreases. This is due to the fact that the frequency of 
gravitons is very strongly red shifted during the de Sitter phase and 
o0(r2) = ~(rl)e-X. 

The change in the number density and energy density of gravitons is 
even more apparent if we compare the number density and energy density 
of gravitons after the de Sitter phase with corresponding quantities calcu- 
lated using adiabatic expansion law. From the adiabatic expansion law it 
follows that 

N.a( r2) = N,,( r, ) ag( r'------~) = N, , ( r l ) e -3~  (21) 
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and 

= G(r l )  G( ' r , )e-G (22) 

The number density and energy density of gravitons with moderately 
high frequency after the de Sitter phase is much larger than expected from 
the law of adiabatic expansion. This can be interpreted as classical descrip- 
tion of the quantum process of graviton creation. The fact that gravitons 
can be created in homogeneous and isotropic Friedman model was first 
noticed by Grishchuk (1975). 

The very-high-frequency gravitational perturbations for which n'qe -x 
>> 1 are not amplified and for such perturbations (B2/A 2) = 1. The number 
density and energy density of very-high-frequency gravitons will therefore 
be adiabatically diluted. After the de Sitter phase the number density of 
very-high-frequency gravitons will be negligibly small and at the present 
epoch practically unobservable. 

For low-frequency (long-wavelength) initial gravitational perturbations 
with n such that n'q <<1 we obtain (BZ/A 2) = (2/9)[e4X/(n'rl)2]. The 
low-frequency gravitational perturbations are also very effectively amplified. 
However, the long-wavelength gravitational perturbations cannot be inter- 
preted in terms of gravitons. 

If the purely gravitational perturbations are generated by quantum 
vacuum fluctuations then their spectrum is described by 

d,, 2 = ,72 (23) 

In the model, which we are considering, the spectrum of very-high-frequency 
gravitational perturbations will not change, and B,, 2 = n 2 for n~-~ >> e• The 
spectrum of moderately high-frequency perturbations with 1 << n'q << e x 
will change, and B,)= n-2. The spectrum of low-frequency perturbations 
with nr 1 << 1 will become scale independent, with B,, 2 independent of n. 
This is the characteristic feature of the constant curvature perturbations. 

We conclude therefore that if the inflationary phase occurs after the 
quantum epoch, the effects of quantum gravity could have been completely 
washed out, and present structure of the universe might depend only on 
physical processes which took place during and after the inflationary epoch. 

I think that a word of caution is appropriate here. The inflationary 
model is very attractive but it is facing serious problems. To obtain 
desirable properties of the Higgs field effective potential one has to fine-tune 
the parameters. If the transition to the true vacuum state is not synchro- 
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nous, density perturbations much larger than allowed by present obser- 
vational limits could be created. This problem has been recently discuss- 
ed by many authors; see for example comprehensive study by Bardeen, 
Steinhardt, and Turner (1983). 
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